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Abstract. We analyzed what kind of fundamental physi-
cal phenomena can be responsible for the generation of the
anomalous latitudinal zones of the seismic activity, and the
hotspots, and some other geophysical processes. The assess-
ment of tidal effect contribution to the earthquake prepara-
tion process is discussed. A disk model of the Earth’s rota-
tion was proposed. The model is acceptable for the homoge-
neous Earth and for the heterogeneous one. The disk model
explains the nucleation of two maximums of the gradient of
the moment of inertia over latitude with respect to the Equa-
tor. Effects of the variations in the Earth’s rotation angular
velocity were estimated and the possible features caused by
the rotation velocity instability were described. The varia-
tions in the relative velocity of the Earth’s rotation (dimen-
sionless valueν ≈ (T − P)/P ) are approximately equal upon
the average to 10−8, whereT is the observed length of day
for the Earth, andP is the astronomical day. These variations
lead to the occurrence of the additional energy estimated as
1020 J.

The authors proposed the hypothesis of a pulsating geoid
based on effects of the Earth’s rotation features, and tidal
forces, and conception of critical latitudes in the solid Earth.
This hypothesis may highlight the phenomenon of zonal in-
tensification of some geological processes in the solid Earth
(the seismic activity, and hotspot location, and major ore de-
posit locations).

1 Introduction

A zonal amplification of the seismic activity at the middle
latitudes was already denoted in the last century (Gutenberg
and Richter, 1949; Mogi, 1979; Sun, 1992). It was revealed

(Levin and Sasorova, 2009a; Sasorova et al., 2013) that seis-
mic activity of the planet is almost absent at the poles and
at the polar caps, and has clearly expressed two peaks in the
middle latitudes of the Northern Hemisphere and the South-
ern Hemisphere (40–50◦ N and 20–35◦ S), and has the sta-
ble local minimum near the Equator (10–20◦ N). Similar dis-
tributions are obtained as for a density of released energy
(Fig. 1a), and for a density of the seismic events (Fig. 1b).
Because of the fact that most earthquakes are concentrated
along the boundaries of lithospheric plates, normalizing of
earthquake number and released energy by the length of
the lithospheric plate boundaries in every single latitudinal
belt was used (Levin and Sasorova, 2009b). Such normaliz-
ing determines the average number of earthquakes generated
per every 100 km of plate boundary. The worldwide seis-
mic catalog (the International Seismological Centre catalog
(ISC, UK)) was used. The data processing of 250 000 seismic
events withM ≥ 4 from 1964 to date was carried out.

The stability of obtained bimodal distributions in time, in
space, and for different latitudinal scales (2, 5, and 10◦) was
proved (Sasorova et al., 2013). It was also shown that the
bimodal structure of the empirical distributions remains for
shallow events, and for intermediate and deep earthquakes.

Thus the attempts to explain the revealed effect by the
tidal forces were undertaken in works (Sun, 1992; Levin and
Pavlov, 2003; Riguzzi et al., 2010).

Below we also discuss some problems connected with the
influence of the tidal forces on the Earth’s seismicity and on
other geophysical processes. The direct relationship between
the EQ origination and the tidal forces is not adequately val-
idated now. However, it should be noted that the total influ-
ence of the tidal forces may have a distinct nonlinear effect.
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Fig. 1.The distribution of the energy density over latitude(a); the latitudinal distributions of the relative seismic event density for 6 magnitude
ranges(b): 1 for 4.0≤ M < 4.5, 2 for 4.5≤ M < 5.0, 3 for 5.0≤ M < 5.5, 4 for 5.5≤ M < 6.0, 5 for 6.0≤ M < 6.5, 6 for 6.5≤ M. The data
were adopted from the (ISC UK) catalog.

We also analyzed the latitudinal distributions of the ma-
jor ore deposits in the Earth using the GIS system based on
the “Largest Mineral Deposits of the World (GIS, 2006)”.
The version used contains data about 1242 major and super-
major ore deposits. It was revealed that the latitudinal distri-
butions of deposit number and deposit density (in 10◦ lati-
tude belts) have a bimodal character: the peaks at 20–30◦ S
and 40–60◦ N, and the local minimum at 10–20◦ N and al-
most zero values at the high latitudes (Sasorova et al., 2013).

Thus the objective of this work is the search for the
model combination that could consolidate the simple me-
chanical analysis of body rotation processes and the elements
of the pulsating geoid model, taking in account the concept
of critical latitudes and consequences of the planet rotation
instability.

2 The tidal forces contribution in the seismic process

According to the tide theory (Melchior, 1983), the maximum
of the tidal energy is observed in the Southern Hemisphere
and the Northern Hemisphere at latitude 45◦, and the zero
values are marked at the poles and at the Equator.

The same results were obtained in the theoretical work
(Levin and Pavlov, 2003) dedicated to the assessment of the
energy accumulated in the Earth’s lithosphere due to the ef-
fects of the external and the internal forces. According to this
model, the total sum of all forces affected on every element
of the Earth’s lithosphere in the state of equilibrium has to be
equal to zero. The largest part of the energy in the lithosphere
is generated by the gravity force and the centrifugal one. Its
interaction determines the shape of the planet and compres-
sion ratio of the Earth (ellipticity). The additional free energy
is released under the influence of the external forces, and an
essential part of this energy is due to the tidal forces. A sim-
ilar opinion was expressed in the work (Sun, 1992), where
maximums of the tide–latitude dependence were first com-
pared with peaks of the seismicity latitude distribution.

The structure of the Earth crust rock where earthquakes
are generated should be considered as a heterophase system
consisting of the solid rock skeleton and the channels occu-
pied by fluid–gas composition, which is a chemically active
medium. The tide periodical impact on the Earth geospheres
leads to the fluid movements along the channels, to alternat-
ing load, and to the alternate activation of the fluid that has an
adsorption property. The fluid interaction with the rock mas-
sive brings to the strength degradation of the rock in accor-
dance with the Rehbinder effect (Levin et al., 2010). Long-
term exposure of the fluid as a surface-active material to rup-
ture walls leads to a sharp reduction in the rock strength of
10–100 times.

Analysis of the tide influence on the seismic process ful-
filled in the work (Morgounov et al., 2006) showed that the
trigger effect of the tidal periodic components on earthquake
occurrence depends on the period of the tidal component. It
was revealed that tidal component SSa (182.62 days), month
component MM (27.55 days), and semi-month component
MSF (14.77 days) manifested the statistical significance of
the connection between the tidal phases and the earthquake
occurrence. However, the short-term tidal harmonics (O1,
P1, K1, N2) with the diurnal and the semi-diurnal periods
did not detect a similar connection.

The short-period tidal forces are especially powerful.
However, the influences of weak but long-period tidal forces
(monthly, semiannual and annual) are more effective than the
influence of several times more powerful short-period tidal
forces (Sun, 1992; Morgunov et al., 2006). A correlation be-
tween the EQ occurrence and short-period tidal forces is very
low, while it becomes a very considerable value for the long-
period tidal forces.

The chemical interaction of the ascending fluid on the
solid skeleton in the case of the long-period tides contin-
ues on a significantly longer time interval than for the short-
period tide. Thus the duration of the effect is more important
than its magnitude.

The long-period tides cause the slow alternating deforma-
tions in the rocks, promote the fluid motion from the depths
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to the surface, help the development of the micro-cracks in
the rocks under the impact of the Rehbinder effect, and lead
to the rupture accumulation and the creation of the conditions
for the seismic fault nucleation (Kasahara et al., 2003).

Thus the long-period tidal effects in accordance with the
modern ideas influenced the seismic processes more effec-
tively. Evidently, along with the direct action of the tidal
forces, it is necessary to take into account the tidal friction
effects and the mechanism of dissipation in the heterogenic
medium, and the viscosity and the thermal conduction effects
in real rocks (Scholz, 1998).

Today, it is obvious that the tidal force influence on
the Earth’s lithosphere manifests itself in quite complicated
ways, and there is no direct reaction of tidal effects to the pro-
cess of the seismic event generation. However, the long-term
repeated summarized impact of the tidal forces with the var-
ious periods could lead to a very sufficient nonlinear effect.

3 A disk model of the Earth and variations in the
moment of inertia

A model describing the development of two symmetric zones
of the instability in solid Earth with respect to the Equator
is proposed. Thus the attempt to search the relationship be-
tween the rotation process characteristics of the Earth and the
features of the observation data listed above was carried out.

The rotating body is regarded as the ellipsoid of revolution
consisting of the sum of the infinitely thin disks perpendic-
ular to the rotation axes (Fig. 2a). We shall consider that the
ellipsoid of revolution is an approximation of the geoid. A
moment of inertia of a rotating body and the derivative of
the moment of inertia with respect to the distance (polar ra-
dius) were calculated. In this case the moment of inertia of
the body is equal to the sum of moments of inertia of all disks
(Levin et al., 2011). The disk model does not take into con-
sideration the instability of the Earth’s rotation velocity and
any processes varied in time.

The moment of inertia of a rotating infinite thin circular
disk (j (z)) with radiusr is equal to:

j (z) =
π

2
r4σ =
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whereR andH are the equatorial and the polar radius of the
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Fig. 2.The sketch of the HomED model(a), the sketch of the HetED
model (b), and the vertical view on the disk plane shown on(b)
from point D (c). HereR is the equatorial Earth radius andH is
the polar radius,ϕ is the latitude of a given infinitely thin disk,h is
the distance between the Earth’s center and the disk plane, andri−1
andri are outer radiuses of the two consecutive rings. The displayed
rings do not identify with any determined geospheres of the Earth.
This sketch is only an illustration of the calculation method of the
moment of inertia for every ring.

wheret =h/H , andρ is body density. Theρ value for the
homogeneous Earth disk model is equal to 5.52 g cm−3.

Then the inflection point of the moment of inertia as the
function of the polar radius (J (h)) is determined by the ex-
pressionH(t −2/3t3

+1/5t5) in Eq. (2) – and its location is
defined byh∗ =H/H

√
3. This point corresponds to latitude

35◦15′22′′ for the homogeneous Earth.
The calculations were performed both for the homoge-

neous in density Earth disk model (HomED) and for the
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heterogeneous one (HetED). In the last case the Earth con-
sists of several tens of the concentric geospheres (ellipsoids)
with the same value of the compression. The infinitely thin
disk that is parallel to the equatorial plane crosses the Earth
at the given latitude, and it consists of several tens of the
coaxial rings (Fig. 2b, c). In the case of the HetED model
all geospheres situated at a given latitude are included in the
calculations. To calculate the moment of inertia of infinitely
thin disks perpendicular to the rotation axes for the HetED
model, it is necessary to define the following parameters of
each ring: the average density of the medium (ρi), and the
outer radius of the ring (ri), where 1≤ i ≤ N andN is the
total number of ellipsoids. Every ring has the constant den-
sity inside the ring (ρi), and its volume is calculated as the
difference between the volumes of the two consecutive rings
(Fig. 2b). The total moment of inertia of the disk composed
of several rings is defined as the sum of the moment of inertia
of all rings comprising the given disk.

Thereto we used three world-famous models of the inter-
nal structure of the Earth: the Bullen–Haddon (1967) model,
the PREM model (Anderson, 2007), and the AK135-F model
(Montagner and Kennett, 1995). Each of the mentioned mod-
els of the internal structure of the Earth consists of sev-
eral tens of geospheres. Every model determines the num-
ber of concentric geospheres (ni , which are equal to 49, 89,
and 145, respectively), the average value of density for each
ellipsoid layer (ρi), and its outer radius. The boundary of the
mantle outer core and the boundary of the inner core and
the outer core are described in these tree models by several
ellipsoids taking into account the complicated processes oc-
curring on these boundaries.

The sketch of the HetED model is shown in Fig. 2b and c.
The last one is the vertical view on the disk plane shown in
Fig. 2b from point D. It should be noted that the simplest
sketch of the Earth is manifested. The displayed rings do not
identify with any determined geospheres of the Earth. This
sketch is necessary only for illustration of the calculation
method of the moment of inertia of every ring.

The critical latitudes are located at±35◦ for the homo-
geneous Earth, and these latitudes are located at latitudes
26◦18′36′′, 26◦20′16′′, and 26◦17′24′′, respectively, for the
heterogeneous Earth. The three calculated values practically
coincide (26◦18′

± 1′). It should be noted that the number
of ellipsoids in the three models mentioned above varies
from 49 (Bullen–Haddon model) to 145 (AK135-F), but the
differences in “the critical latitude” locations are no more
than ±1′. The liquid outer core and the solid inner core
are considered in the analyzed disk models as the parts of
the infinitely thin disks with corresponding density. In this
manuscript we presented the disk model only at qualitative
level. All details of the calculations were discussed in the
work (Levin et al., 2011).

The gradient of the moment of inertia of the infinitely thin
disks (G(h)) as a bimodal function becomes the maximum
values at two symmetrical points with respect to the Equator

Fig. 3. The latitudinal distributions of a dimensionless gradient of
the moment of inertia of the infinitely thin disks (theG(h)∗ values)
are presented for the homogeneous Earth (blue line) and for the
heterogeneous Earth (red line). Horizontal axis is angular latitudes.
Vertical axis gives theG(h)∗ values. Maximum values marked as
dashed lines.

determined as critical geocentric latitude. The dimensionless
gradientG(h)∗ was determined as theG(h) value normal-
ized by the averaged valueG(h) for the homogeneous Earth
(h varied as 0< h< H ). The coefficient of normalization is
equal to 2π ρ R4/H . The latitudinal distributions of the di-
mensionless gradients (G(h)∗) for the homogeneous Earth
and for the heterogeneous Earth are presented in Fig. 3.

It was shown that the existence of “the critical latitudes”
and their location do not depend on the Earth’s compression
value –ε (in the case of the insignificant ellipticity) – and
depend only on geometric properties of the rotating body.

The common tendency of the activation of some physical
processes at the middle latitudes for certain rotating celestial
bodies (the Earth, the Sun, the Moon, Jupiter, etc.) should
be noted now. For example, the well-known phenomenon is
that a period of revolution of the Sun layers depends on he-
liocentric latitude. These periods vary from 25 days for the
layers near the Sun’s Equator to 29 days for the layers lo-
cated near the Sun’s polar caps. The peaks of the gradient
of the revolution period are located at latitudes±40◦, and
just approximately at these latitudes arise the sunspots. The
critical latitudes may also be observed as a feature of other
rotating celestial bodies.

4 The Earth’s figure and critical latitudes

The Earth’s figure had been shaped under the influence of
gravity and centrifuge potentials as a spheroid (geoid) with
an ellipticity:

ε = (R − H)/R,

whereR andH are the equatorial radius and the polar ra-
dius of the planet, respectively. The spheroid radius vector is
determined by the general expression:

r = R0 (1 − (2/3)εP2 (sinφ)), (3)
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Fig. 4. The sketch of the rotating celestial body: three fragments for three different values of angular velocity. The angular velocity value
ω0 ≈ 0 (a); the angular velocity isω1 > ω0 (b); the angular velocity isω2 > ω1 > ω0 (c). The yellow solid line denotes critical latitude for
three fragments of the rotating body. The dotted black circles on the(b) and(c) fragments indicate the spheres whose volume is equal to the
volumes of rotating ellipsoids.

whereR0 is the radius of the sphere, whose volume is equal
to the volume of the spheroid,ϕ is the geocentric latitude, and
P2 (sinφ) = 1.5· sin2 φ − 0.5 – a zonal spherical function of
the second order.

It is evident from Eq. (3) that the radius vectorr =R0 coin-
cides with the average radius of the planet at critical latitudes
(φ0 =±arcsin(1/

√
3) =±35◦15′52′′) and does not depend on

its ellipticity.
The scheme of the spheroid evolution and the critical lati-

tude appearance is presented in Fig. 4. It contains three frag-
ments with three celestial bodies with different rotation angu-
lar velocities:ω0, ω1, ω2. Each fragment is described by the
set of the parameters: the rotation angular velocity (ωi), the
equatorial radius (Ri), the polar radius (Hi), the compression
ratio of the bodyεi (or ellipticity) and the inertia moment
(Ii). The fragment (a) presents the rotating body with the
following parameters:ω0 ≈ 0, ε0 ≈ 0, R0 ≈ H0, I0. The pa-
rameters of the rotating body on the fragment (b) become val-
ues:ω1 > ω0, ε1 > ε0, R1 > R0, H1 < H0, I1 > I0. The dotted
black circles on the fragments (b) indicate a sphere whose
volume is equal to the volumes of rotating ellipsoids, and the
centers of these bodies are located at the same point. The in-
tersection plains of two such bodies are located at latitudes
±ϕ0. The fragment (c) presents the rotating body with param-
eters:ω2 > ω1, ε2 > ε1, R2 > R1, H2 < H1, andI2 > I1, but
the intersection plains in this case are also located at latitude
±ϕ0. The locations of the intersection plains of two bodies do
not vary with the changing of the angular rotating velocity;
these locations remain constant at the latitudes±ϕ0 called
“critical latitudes”.

On the basis of equations for the geopotential at the Equa-
tor (Stacey and Davis, 2008), at the Pole, and at the critical
latitude, we revealed the theoretical formula for the ellipticity
of a planet that does not contain the body moment of inertia

ε =
R3

0 ω2

γ M
, whereγ is the gravitation constant, andM is the

Earth’s mass.

Fig. 5. The dependence of the Gaussian curvature normalized to
the sphere curvatureε∗ =κ R2

0 over latitude for different ellipticity
values: 1 forε0 = 0 – (sphere), 2 forε = 0.00135, 3 forε = 0.00335
– (the Earth), 4 forε = 0.00535. The vertical axis is a normalized
curvature.

The total (or Gaussian) curvature of the rotation ellipsoid
surface is determined, as it is well known by the following
equations:

κ =
(1 − ε)8/3

R2
0

Q2
(
ε, sin2 φ

)
, (4)

Q =
sin2 φ + (1 − ε)2 cos2 φ

sin2 φ + (1 − ε)4 cos2 φ
. (5)

The dependences of the spheroid total curvature on the lati-
tudes for different ellipticitiesεi are given in Fig. 5. The to-
tal curvature values are normalized to the sphere curvature
ε0. The normalized curvatures are calculated asε∗ =κ R2

0.
One can see that common points of the intersection for the
family of Gaussian curves with small ellipticity are situ-
ated at the critical latitudes. Using the series expansion for
the total curvature, we can receive as its first approximation
κ =κ1 (1− (8/3)εP2 (sinφ)), whereκ1 = 1/R2

0 is the total
curvature of a sphere. Evidently, for the first approximation a
total curvature of a spheroid at the critical latitudes does not
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Fig. 6.The time series of the monthly averaged values of relative an-
gular velocity of the Earth’s rotation (ν) during the last 50 yr, where
ν ≈ (T − P)/P ; hereT is the Earth length of day (s), andP is the
astronomical day – 86 400 s. The vertical axis givesν × 1010.

depend on an ellipticity in the case where the sphere volume
and the spheroid volume are equal.

It should be noted that the areas with the largest variation
in the curvature values (maximum of the curvature gradient)
are located near the critical latitudes.

5 The variation in the Earth’s rotation velocity

The Earth’s rotation energy is determined in the first approx-
imation as the energy of the perfectly rigid body (sphere)
with the constant moment of inertia and the constant angular
velocity of the rotation. The average value of the Earth’s ro-
tation energy around the axis of revolution is approximately
equal toE = 3× 1029 J.

The change in the ellipticity of the rotating ellipsoid
(geoid) involves a change in the total energy of the rotating
body. Outer influences, and particularly a tidal friction of the
Moon, and also interior effects, originated in a global mantle
discontinuity, and gravity, and a chemistry differentiation of
the Earth’s interior, and other phenomena lead to a loss in the
Earth’s rotation velocity.

The variations in the rotation velocity value have been col-
lected by survey by the IERS (IERS, 2000) since 1962. How-
ever, the data from 1656 are available now (McCarthy and
Babcock, 1986).

The plot of the variation in the Earth’s rotation velocity
from 1962 to 2012 is presented in Fig. 6. The value of the
relative variation in velocity is equal toν ≈ (T − P)/P . Here
T is the Earth length of day (s), andP is the astronomical day
– 86 400 s (the vertical axis in Fig. 6 givesν × 1010).

The results of the spectral analysis of theν value are pre-
sented in Fig. 7. It should be noted that the relative variations
in rotation velocity (per year) have an amplitude of about
10−8. Below it will be used for an assessment of additional
energy value occurring due to the variations in the rotation
velocity.

Fig. 7. Spectrum of monthly averages of theν values on a log–log
scale. The red lines with arrows indicate the representative peaks of
the spectrum. The horizontal axis gives a number of cycles per year.

6 The assessment of the Earth rotation excess energy

The kinetic energy of the revolving body is described by the
following expressions:

E = 1/2 × I ω2, whereI =
2

5
×

M R2
0

(1 − ε)2/3
.

Let us designate:

E1 =
1

5
M R2

0 ω2, thusE =
E1

(1 − ε)2/3
. (6)

An expansion into a series of the expression (Eq. 6) gives:

E = E1 +
2

3
εE1 + O

(
ε2

)
,

whereO(ε2) is the remainder term. Therefore the relative
energy of a spheroid may be described as:

E∗
=

E − E1

E1
=

2

3
ε > 0, (7)

and the relative radius vector of the spheroid becomes, ac-
cording to expression (Eq. 3), equal to:

r∗
=

r − R0

R0
= −

2

3
εP2 (sinφ). (8)

This formula gives the deflection degree of the spheroid ra-
dius vector in comparison with the radius of the sphere. Thus
kinetic energy will depend only on the ellipticity of a planet.

We will determine the dependence of the Earth’s rotation
energy on the variations in the angular velocity rotation. The
derivative of energy of the rotating body is equal to:

d E = 2Ed ω/ω + 1/2ω2d I.
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Thus, the total rotation energy had to increase at least to the
value ofd E = 2Ed ω/ω through the influence of the velocity
variations, and the addition energy can be calculated as:

d E = 2E∗ d ω/ω = 6 × 1029
× 10−8J

and may reach 1020–1021 J.
The analysis of the peculiarity of the Earth’s rotation an-

gular velocity performed on the basis of Newton’s works
by Maclauren, Clairaut, Poincare, and Veronnet (Poincare,
1902; Veronnet, 1912) allowed us to propose the model of
the pulsating geoid. The growth in the spheroid rotation an-
gular velocity leads to the increase in the equator radius, to
the rise in the ellipticity and the kinetic energy of the rotat-
ing body. The changes in the angular velocity had to lead to
pulsations of the spheroid with fixed location of the critical
latitudes. The growth of the angular velocity also produced
an extension of the medium in the Equator area and the com-
pression in the polar zones. The decrease in the angular ve-
locity leads to the opposite effect – the compression in the
plane of the Equator and the extension along the polar axis.
Such pulsations of the spheroid had to transfer the additional
energy to the Earth’s shell in comparison with the energy of
the rotating of the perfectly rigid body.

7 Conclusions

The disk model of the Earth takes into consideration (re-
gards) only the gradient of inertia of a rotating celestial body
consisting of the sum of infinitely thin disks perpendicular to
rotation axes. It was also manifest that just the ellipsoid fig-
ure properties could explain the existence of the “critical lati-
tudes” on the basis of the disk model, but this model does not
regard the instability of the velocity of the Earth’s rotation.

An analysis of the effects of the zonal intensification of
some observed geophysical processes on the Earth combined
with the analysis of the ellipsoid figure properties allowed the
authors to make sense of the complicated problem and to pro-
pose the hypothesis of pulsations of the geoid. The disturbed
motion of the Earth in the Earth–Moon system together with
other outer and inner influences leads to the instability of the
planet’s rotation angular velocity. The change in the angular
velocity leads to the accelerations and decelerations of the
geoid rotation that finally results in the growth and decline of
the ellipticity alternately, i.e., to the pulsations of the geoid.
The energy of these pulsations can be estimated by values
near 1020 J. It is comparable with the energy released annu-
ally from the earthquakes. So, the effect of the geoid pul-
sation may explain the phenomenon of the earthquake trig-
gering and the intensification of the seismic process in the
middle latitude region.

The maximum of the energy released because of the ir-
regularity of the Earth’s angular rotation velocity is located
in the areas near the critical latitudes, and the zone of the

intensifications of some geophysical processes are also con-
nected with the critical latitudes.
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