УДК 550.42:552.323.5

ПРИСУТСТВИЕ МАНТИИ ИНДИЙСКОГО MORB-ТИПА ПОД КУРИЛЬСКОЙ ОСТРОВНОЙ ДУГОЙ: РЕЗУЛЬТАТЫ ИЗОТОПНЫХ ИССЛЕДОВАНИЙ МАФИЧЕСКИХ ЛАВ О-ВА КУНАШИР

© 2012 г. Ю. А. Мартынов*, Дж. 'И. Кимура**, А. Ю. Мартынов*, А. В. Рыбин***, М. Катакузи****

*Дальневосточный геологический институт ДВО РАН

просп. 100-летия Владивостока, 159, Владивосток, 690022, Россия; e-mail: martynov@fegi.ru

** Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology

Yokosuka 237 0061, Japan; e-mail: jkimura@jamstec.go.jp

***Институт морской геологии и геофизики ДВО РАН

ул. Науки, 5, Южно-Сахалинск, 693022, Россия; e-mail: rybin@imgg.ru

****Kansai Construction Survey Co., LtD., Osaka 562, Japan; e-mail: maimai 128@gmail.com

Получена в редакцию 22.03.2011 г.

Получена после доработки 06.06.2011 г.

На основании новых данных по изотопии Hf, Pb и Nd в разновозрастных, преимущественно в основных, породах о-ва Кунашир рассматриваются вопросы природы надсубдукционной мантии южного звена Курильской островной дуги. По крайней мере, с позднего кайнозоя ее изотопный состав соответствовал мантии типа MORB Индийского океана. Граница с мантийным резервуаром тихоокеанского MORB-типа, проходила, вероятно, по Курило-Камчатскому желобу.

ВВЕДЕНИЕ

Зоны субдукции Западной Пацифики являются границами двух основных мантийных доменов Земли – индийского и тихоокеанского типов MORB (Klein et al., 1988; Rehkämper, Hofmann, 1997; Pearce et al., 1999; Nebel et al., 2007). Базальты срединно-океанических хребтов и островных дуг, производные мантийного резервуара индийского MORB-типа или DUPAL мантии (Milner, LeRoex, 1996; Peate et al., 1999), отличаются от пород мантии типа MORB Тихого океана элементным составом и изотопными отношениями Sr, Nd и Pb (Dupré, Allègre, 1983; Hamelin, Allègre, 1985; Mahoney et al., 1989, 1992). Наиболее информативными при выделении двух типов резервуаров считаются изотопы свинца, прежде всего величина ²⁰⁸Pb/²⁰⁴Pb отношения. По этому критерию мантия индийского типа MORB (DUPAL anomaлия) была закартирована под островными дугами и задуговыми бассейнами Юго-Западной Пацифики (Loock et al., 1990; Haase et al., 2002; Hergt, Hawkesworth, 1994; Crawford et al., 1995 и др.), Ceверо-Восточной Японии и Японским морем (Hickey-Vargas 1991; Hickey-Vargas et al., 1995; Jolivet, Tamaki, 1992; Pouclet, Bellon, 1992 и др.). Присутствие мантии MORB-типа Тихого океана предполагалось под Камчатским полуостровом (Kesting et al., 1996; Straub et al., 2009; Мартынов и др., 2010).

Последние достижения плазменной спектрометрии (MC ICP-MS) позволяют использовать Hf-Nd изотопную систематику и созданные на ее основе ковариационные диаграммы для уточнения различий и границ между мантийными доменами (Pearce et al., 1999; Woodhead et al., 2001; Münker et al., 2004). Это особенно актуально для субдукционных обстановок, где мобилизация Рь из измененной океанической коры и осадков может существенно менять первичный состав надсубдукционной мантии. Например, согласно (Pearce, Peat, 1995), до 75% свинца в островодужных базальтах контролируется субдукционными компонентами. В противоположность этому Hf и Nd практически немобильные в низкотемпературном водном флюиде, менее чувствительные к вторичным воздействиям, являются более надежными маркерами мантийных резервуаров под вулканическими островными дугами и задуговыми бассейнами (Pearce et al., 1999, 2007 и др.). Так, изотопы Hf позволили установить присутствие мантии индийского МОRВ-типа под Камчатским полуостровом (Münker et al., 2004).

В настоящей работе на основании новых данных по изотопии Hf, Pb и Nd в разновозрастных, преимущественно в основных, породах о-ва Кунашир рассматривается состав надсубдукционной мантии южной зоны Курильской островной дуги, наименее изученной субдукционной системы Северо-Западной Пацифики. Рис. 1. Схематическая карта Курильских островов и Курильской тыловодужной котловины.

Серое поле в тыловой зоне о-ва Итуруп — область подводных вулканических сооружений, изотопный состав которых приведен в работе (Bindeman, Bailey, 1999); звездочкой помечен подводный вулкан Геофизик (Baranov et al., 2002).

Серая пунктирная линия — условная граница фронтальных и тыловодужных четвертичных вулканитов.

КРАТКАЯ ГЕОЛОГИЧЕСКАЯ И ТЕКТОНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Курильская островная дуга, являющаяся частью глобальной геодинамической системы погружения Тихоокеанской океанической плиты под Северо-Американскую, состоит из Курило-Камчатского глубоководного желоба, Большой Курильской вулканической гряды и Курильской глубоководной котловины (рис. 1). При постоянной скорости сближения около 8.6 см/год возраст океанической коры вблизи Курило-Камчатского желоба составляет 90 млн. лет на севере и 118 млн. лет на юге. Максимальная глубина очагов землетрясений, до 650 км, также свидетельствует о древнем возрасте океанической коры. Все участки островной дуги классифицируются как зоны умеренного сжатия (Bailey, 1996).

Курило-Камчатский глубоководный желоб заполнен океаническими осадками, состоящими из континентального материала (17—80 об. %), кремнистого вещества биогенного происхождения (около 9 об. %), вулканического пепла (первые об. %) и небольшого количества карбонатов. Содержание континентального материала в осадках увеличивается с севера на юг (Ishikawa, Tera, 1997).

Формирование *Курильской котловины* относят к раннему-среднему миоцену (32–15 млн. лет). Несмотря на смену режима растяжения на сжатие в плиоцене (Baranov et al., 2002), магматические процессы в тыловой зоне оставались активными, повидимому, вплоть до плейстоцена, о чем свидетельствуют высокий тепловой поток (до 105 мВт/м²) и наличие четвертичных (0.84–1.07 млн. лет) подводных вулканов на севере-востоке задугового бассейна (Baranov et al., 2002; Тарарин и др., 2000).

Зарождение *Курильской вулканической дуги* принято относить к олигоцену или раннему миоцену. Общая ее протяженность превышает 1150 км при ширине от 100 до 200 км. Традиционно в ее пределах выделяют северную, центральную и южную зоны или сектора. Глубина погружающейся Тихоокеанской океанической плиты варьирует от 94.2 км под Северными до 92 км под Южными Курилами (Syracuse, Albers, 2006). Мощность коры изменяется незначительно: от 28–33 км на юге, 25–30 км в центральной части и до 32–36 км на севере (Злобин и др., 1987). Присутствие в вулканитах ксенолитов метаморфиче-

ПЕТРОЛОГИЯ том 20 № 1 2012

ских пород (плагиоклаз-пироксеновых гранулитов, кристаллических сланцев) свидетельствует о континентальной природе земной коры на всем протяжении Курильского архипелага (Федорченко и др., 1989).

Рис. 2. ²⁰⁸Pb/²⁰⁴Pb–²⁰⁶Pb/²⁰⁴Pb изотопные отношения в основных вулканитах Курило-Камчатсткой островодужной системы, в измененных базальтах и осадках Тихоокеанской плиты.

1–5 – лавы о-ва Кунашир среднемиоценового (1), познемиоценового (2), плиоценового (3), плиоцен-плейстоценового (4) и голоценового (5) этапов формирования. Залитые символы – вулканический фронт; незалитые – тыловая зона; 6 – плейстоцен-голоценовые вулканиты Южной Камчатки (Duggen et al., 2007); 7 – драгированные образцы подводных вулканов Курильской котловины (Baranov et al., 2002; Bindeman, Bailey, 1999); 8 – измененные базальты Тихоокеанской плиты (Duggen et al., 2007; Hauff et al., 2003); 9 – валовый состав осадков Тихого океана (Plank, Langmuir, 1998; Plank et al., 2007).

При построении диаграммы использовались данные, опубликованные в работе (Martynov et al., 2010).

Вулканические и вулканогенно-осадочные породы, слагающие Курильские острова, подразделяются на два структурных яруса. Нижний сформирован умеренно деформированными неогеновыми отложениями, верхний — слабо деформированными плейстоцен-голоценовыми эффузивами. Вулканические породы обоих структурных ярусов варьируют по составу от базальтов до риолитов, но базальты и андезиты преобладают (Подводный вулканизм..., 1992).

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Соотношение радиогенных изотопов Sr, Nd, Pb в разновозрастных лавах о-ва Кунашир, преимущественно в базальтах и андезитах, были получены ранее (Martynov et al., 2010). ¹⁷⁶Нf/¹⁷⁷Нf отношение проанализировано в 5 образцах визуально слабо измененных магнезиальных базальтов (MgO = 5.27– 12.22 мас. %) среднемиоценового, плиоценового, плиоцен-плейстоценового и голоценового возрастов, отобранных как в пределах вулканического фронта, так и тыловой зоне (таблица).

Выбранные для аналитических исследований и истертые до пудры образцы в течение часа подвергали холодному кислотному травлению в 0.6 М растворе HCl. Твердый остаток промывали деионизированной водой до полного удаления продуктов реакции. Высушенный порошок растворяли в тефлоновой кювете смесью HF-HNO₃. Сепарацию Нf проводили по методу, описанному в (Blichert-Toft et al., 1997), после чего изотопный состав Hf определяли на приборе Plasma54 (VG Element) MC ICP-MS в университете Шимане (г. Матсуе, Япония). Аналитические данные по ¹⁷⁶Hf/¹⁷⁷Hf нормализовались к значению 176 Hf/ 177 Hf = 0.282160 (Blichert-Toft et al., 1997) во внешнем стандарте JMC 475. Общая аналитическая погрешность анализа не превышала ±0.000010.

ИЗОТОПНЫЙ СОСТАВ Рb, Nd И Hf В ОСНОВНЫХ ЛАВАХ О-ВА КУНАШИР

На диаграмме ²⁰⁸Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb (рис. 2) показано положение фигуративных точек составов проанализированных образцов о-ва Кунашир по отношению к дискриминантной линии MORB Тихого и Индийского океанов, по (Pearce et al., 1999). При близких значениях ²⁰⁶Pb/²⁰⁴Pb отношения разновозрастные основные вулканиты о-ва Кунашир характеризуются повышеннызначениями ²⁰⁸Pb/²⁰⁴Pb по сравнению с ΜИ плейстоцен-голоценовыми лавами Камчатского полуострова, формируя в поле MORB Индийского океана тренд, субпараллельный дискриминантной линии. Лавы задуговой Курильской котловины вместе с вулканитами Камчатского полуострова образуют единый кластер вблизи границы мантийных резервуаров. Измененная океаническая кора Тихоокеанской плиты (Hauff et al., 2003) по соотношению изотопов свинца соответствует мантии тихоокеанского MORBтипа, а осадочный чехол ложа Тихого океана (Plank, Langmuir, 1998; Plank et al., 2007) – типа **МОRВ** Индийского океана.

На диаграмме ε_{Hf} — ε_{Nd} (рис. 3) разновозрастные базальты о-ва Кунашир также располагаются в поле MORB Индийского океана, отличаясь от плейстоцен-голоценовых магматитов Камчаткого полуострова и Западных Алеут, а также вулканогенных осадков Тихого океана более высокими значениями ε_{Hf} .

ПЕТРОЛОГИЯ том 20 № 1 2012

Распределение петрогенных (мас. %) и микроэлементов (г/т), радиогенных изотопов (Nd, Pb, Hf) в представительных образцах базальтов о-ва Кунашир

	D 75/12	D 69/2	D 151/6	D 112/14	D 41/2000
Компоненты	F-73/13	F-08/3	F-131/0	F-112/14	F-41/2000
	T3	T3	ВΦ	Т3	ВΦ
SiO ₂	52.50	50.15	49.36	48.95	49.84
MgO	12.22	5.27	6.28	12.68	5.83
K ₂ O	1.11	0.51	0.20	0.06	0.03
П.п.п.	1.85	2.51	1.85		
Li	8.23	8.29	2.32	2.72	3.66
Be	0.309	0.458	0.192	0.154	0.126
Rb	14.52	9.87	1.03	1.38	1.66
Y	9.5	35.7	11.7	11.1	11.3
Zr	21.19	62.1	22.2	20.3	17.06
Nb	0.3531	2.115	0.231	0.243	0.116
Sb	0.153	0.049	0.105	0.037	0.091
Cs	3.48	0.48	0.04	0.08	0.12
La	4.16	11.32	1.61	1.94	0.95
Ce	9.11	18.07	4.13	4.42	2.85
Pr	1.17	3.41	0.70	0.78	0.50
Nd	5.34	17.46	3.55	3.60	2.81
Sm	1.45	4.58	1.28	1.24	1.08
Eu	0.59	1.54	0.51	0.53	0.48
Gd	1.68	6.23	1.77	1.88	1.59
Tb	0.27	1.08	0.33	0.34	0.30
Dy	1.79	6.29	2.22	2.09	2.07
Ho	0.38	1.28	0.49	0.45	0.46
Er	1.05	3.51	1.37	1.26	1.29
Tm	0.164	0.512	0.210	0.200	0.203
Yb	1.07	3.29	1.48	1.31	1.37
Lu	0.16	0.54	0.22	0.20	0.21
Hf	0.60	1.65	0.68	0.76	0.61
Hf*	-4.55	-10.09	-2.35	-1.87	-1.66
Та	0.021	0.138	0.020	0.020	0.012
TI	0.146	0.047	0.009	0.008	0.003
Ph	4 13	3 25	3 24	2.11	1 69
Th	0.77	1.28	0.20	0.42	0.08
U	0 199	0.516	0.094	0.134	0.037
143 Nd/ 144 Nd	0.512925	0.512965	0.513018	0.513012	0.513085
2SE	+9	+9	+9	+9	+9
206 Pb/ 204 Pb	18,1981	18.3588	18.4215	18.4218	18.4175
2SE	+7	+7	+8	+8	+7
207 Pb/ 204 Ph	15.5068	15.5395	15.5247	15.5278	15.5224
2SE	±7	+7	±7	+8	+8
208 Pb/ 204 Pb	38 1037	38 3182	38 3091	38 2908	38 2641
2SE	+20	+19	+18	+20	+21
²⁵ ¹⁷⁶ Hf/ ¹⁷⁷ Hf	0 283205	0 283194	0 283326	0 283267	0 283308
2SE	+6	+8	+8	+10	+7
201	<u>-0</u>	±0	<u>–</u> 0	±10	<u> </u> - '

Примечание. Р-75/13 — средний миоцен, Назарова-Лагунное (в районе р. Заливной); Р-68/3 — плиоцен, мыс Плиоценовый; Р-151/6 — плиоцен, Мостовая-Филатова; Р-112/14 — плиоцен-плейстоцен, Назарова-Лагунное (гора Фрегат); Р-41/2000 — голоцен, влк. Головнина (южнее Б. Серной, субвулк. тело). ТЗ — тыловая зона; ВФ — вулканический фронт.

ПЕТРОЛОГИЯ том 20 № 1 2012

Рис. 3. Диаграмма є_{Нf}-є_{Nd} для субдукционных лав Курило-Камчатской островодужной системы и вулканических осадков Тихого океана.

1-4 – базальты и андезибазальты фронтальной и тыловой зон о-ва Кунашир среднемиоценового (1), плиоценового (2), плиоцен-плейстоценового (3) и голоценового (4) этапов формирования (залитые символы – вулканический фронт); 1, 2 – пунктирные – рассчитанные составы первичной надсубдукционной мантии тыловодужных вулканитов. 5–7 – плейстоцен-голоценовые вулканиты Камчатского полуострова и западной части Алеутской островной дуги, по (Münker et al., 2004): Восточный вулканический пояс (5), Центральная Камчатская депрессия (6), Срединный хребет (7), Алеуты (8).

AVS и PVS — вулканические осадки Тихого океана вблизи и на удалении от вулканических островных дуг, по (Pearce et al., 2007). Вклад вулканогенного осадочного компонента (AVS) в магмогенезис вулканитов тыловой зоны принимался равным 5%; Nd рассматривался в качестве мобильного элемента, Hf — "консервативного".

Пунктирная линия – граница мантийных резервуаров индийского и тихоокеанского MORB-типов для Юго-Западной Пацифики ($\epsilon_{Hf} = 1.522\epsilon_{Nd} + 1.26$, по Pearce et al., 1999); сплошная – для района Марианских островов ($\epsilon_{Hf} = 1.6\epsilon_{Nd}$, по Pearce et al., 2007).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Изотопный и микроэлементный баланс субдукционных лав, в том числе и Курильской островодужной системы, зависит от относительного вклада в магмогенезис:

1) первичной перидотитовой мантии;

2) субдукционных компонентов – водного флюида или расплава/надкритического флюида, образующихся, соответственно, при низко- и высокотемпературном преобразовании океанической коры (измененные океанические базальты + осадочный чехол);

3) корового контаминанта;

4) дополнительного компонента — древней субдукционной плиты с геохимическими характеристиками резервуара типа MORB Индийского океана (Straub et al., 2009).

Достоверность четвертого фактора трудно оценить, поскольку современная субдуцирующаяся океаническая кора имеет характеристики тихоокеанского MORB-типа, а погруженная древняя океаническая плита недоступна для опробования. Коровая контаминация часто рассматривается в качестве важного процесса, определяющего состав островодужных магматических пород. Например, по мнению (Kimura, Yoshida, 2006), закономерные изменения изотопно-геохимических характеристик четвертичных лав во фронтальной зоне Северо-Восточной Японии связаны с особенностями состава коровых расплавов-контаминантов. Однако для Курильской островной дуги роль этого фактора была, по-видимому, незначительной (Ryan et al., 1995; Ishikawa, Tera, 1997; Martynov et al., 2010; Мартынов и др., 2010), особенно для магнезиальных базальтов.

Вклад субдукционных компонентов в изотопный баланс Рb можно качественно описать, опираясь на результаты предшествующих исследований. Поскольку в магмогенезисе Курильской островной дуги преобладающее влияние (более чем на 95%) оказывал низкотемпературный водный флюид, образованный при дегидратации измененной океанической коры (Ishikawa, Tera, 1997; Martynov et al., 2010; Мартынов и др., 2010), его изотопные характеристики должны были соответствовать резервуару MORB Тихого океана (рис. 2). Следовательно, мантия, переработанная таким флюидом, а также магматические расплавы, образованные при ее плавлении, должны характеризоваться ²⁰⁸Pb/²⁰⁴Pb отношениями более низкими, чем первичное вещество надсубдукционной мантии. Состав последней должен проецироваться в более радиогенную область диаграммы ²⁰⁸Pb/²⁰⁴Pb—²⁰⁶Pb/²⁰⁴Pb относительно нижней границы поля MORB Индийского океана.

Несмотря на то, что в субдукционных обстановках Nd является более "консервативным" элементом, чем Pb, предполагается, что он может в небольших количествах растворяться в водном флюиде и эффективно транспортироваться высокотемпературным осадочным субдукционным компонентом — расплавом или надкритическим флюидом, образованными при плавлении или дегидратации субдуцируемых осадков.

Поведение Hf в субдукционных процессах до сих пор является предметом дискуссии (Pearce et al., 1999, 2007; Münker et al., 2004). Согласно современным представлениям, этот элемент может быть или мобильным, или немобильным в зависимости от физической природы субдукционного компонента. Практически нерастворимый в водном флюиде, он, как и Nd, может концентрироваться в расплаве или в надкритическом флюиде, образующихся в результате высокотемпературного термального преобразования океанического осадка.

Индикатором относительной мобильности Nd и Нf является гафнивая аномалия на расширенных графиках распределения редкоземельных элементов, нормализованных к хондриту (рис. 4). Глубина аномалии оценивается величиной Hf*, которая рассчитывается по уравнению [(Hf_n) – (Nd_n + Sm_n)/2], где Hf_n, Nd_n и Sm_n – нормализованные к C1 хондриту концентрации гафния, неодима и самария. Отрицательные значения Hf* указывают на большую мобильность Nd в магматическом процессе, положительные – на меньшую.

Три проанализированных образца голоценового, плиоцен-плейстоценового и плиоценового возрастов из вулканических пород о-ва Кунашир деплетированы в отношении легких лантаноидов (LREE) и характеризуются слабо выраженной отрицательной Нf-аномалией (рис. 4, таблица). На диаграмме ε_{Hf} Nd/Hf (рис. 5) их фигуративные точки формируют короткий субвертикальный тренд, лишь незначительно смещенный в область более высоких Nd/Hf отношений относительно поля MORB. Эти данные свидетельствуют о вовлечении в магмогенезис субдукционного компонента с низкой способностью к концентрации LREE и Hf. Таким характеристикам отвечает низкотемпературный водный флюид преобладающий субдукционный компонент в лавах о-ва Кунашир и Курильской островной дуги в целом (Martynov et al., 2010; Мартынов и др., 2010). Метасоматическое влияние такого флюида на изотопный баланс Hf и Nd надсубдукционной мантии должно быть минимальным. Поэтому изотопные

ПЕТРОЛОГИЯ том 20 № 1 2012

Рис. 4. Спектры распределения резкоземельных элементов и Hf, нормализованные к C1 хондриту, для представительных образцов разновозрастных базальтов о-ва Кунашир.

средний миоцен; 2 – плиоцен; 3 – плиоцен-плейстоцен; 4 – голоцен. Залитые символы – вулканический фронт, незалитые – тыловая зона.

Заметим, что образцы, отобранные в пределах вулканического фронта, отличаются слабо выраженной отрицательной Hf-аномалией.

характеристики магматических пород должны, в основном, соответствовать составу первичного мантийного вещества.

Обогащение легкими лантаноидами и негативная Hf-аномалия (Hf* = -4.55, -10.09) отчетливо проявлены в двух образцах базальтов тыловой зоны о-ва Кунашир среднемиоценового и плиоценового возрастов. Это согласуется с более ранними исследованиями (Martynov et al., 2010), свидетельствующими об участии в тыловодужном магмогенезисе высокотемпературного осадочного компонента, способного более эффективно, чем низкотемпературный водный флюид, транспортировать LREE. Хотя пелагические и, в меньшей мере, вулканогенные осадки северо-западной части Тихого океана характеризуются экстремально низкими значениями ¹⁴³Nd/¹⁴⁴Nd (Plank, Langmuir, 1998; Plank et al., 2007), при их относительно небольшом вкладе (менее 5%) изотопный баланс надсубдукционной мантии меняется незначительно (рис. 3).

На диаграмме $\varepsilon_{\rm Hf}$ —Nd/Hf (рис. 5) фигуративные точки составов двух образцов задуговых лав отчетливо смещены в область более низких $\varepsilon_{\rm Hf}$ и более высоких Nd/Hf значений. Такое смещение можно объяснить: (1) — консервативным поведением Hf при незначительной деплетации мантийного источника тыловодужных базальтов (тренд A); (2) относительной мобильностью данного элемента в субдукционном компоненте с более высоким

Рис. 5. ε_{Hf}-Nd/Hf для разновозрастных лав о-ва Кунашир, по (Pearce et al., 2007) с небольшими изменениями. Поля базальтов срединно-океанических хребтов и осадков по (Pearce et al., 2007). Тренд А – Hf является "консервативным" элементом, Nd – мобильным. При этих условиях мантийный источник тыловодужных лав несколько менее радиогенный по отношению Hf. Тренд B – Hf и Nd являются мобильными элементами. Условные обозначения см. на рис. 4.

Nd/Hf отношением, чем в океанических осадках (тренд В). И в первом и во втором случаях изотопный баланс гафния в проанализированных образцах должен в основном определяться составом первичного мантийного вещества. Даже при мобильном поведении, Hf заметно в меньшей степени, чем Nd, растворим в высокотемпературном осадочном субдукционном компоненте. Кроме того, отношение ¹⁷⁶Hf/¹⁷⁷Hf в вулканогенных осадках Тихого океана очень низкое (рис. 3). Поэтому по сравнению с проанализированными образцами состав первичной мантии должен проецироваться в область несколько более высоких значений $\varepsilon_{\rm Hf}$ относительно нижней границы поля MORB Индийского океана на диаграмме $\varepsilon_{\rm Hf}$ – $\varepsilon_{\rm Nd}$ (рис. 3).

Таким образом, как Pb, так и Hf-Nd изотопные системы указывают на присутствие, по крайней мере, с позднего кайнозоя верхней мантии индийского MORB-типа под южным сектором Курильской островной дуги. Граница между мантийными резервуарами индийского и тихоокеанского MORB-типов проходила, скорее всего, по Курило-Камчатскому желобу, как это предполагалось ранее в работе (Nebel et al., 2007).

ЗАКЛЮЧЕНИЕ

Изучение Pb-Hf-Nd элементных и изотопных систем впервые позволило установить присутствие мантийного резервуара типа MORB Индийского океана под южной частью Курильской вулканической дуги. По крайней мере, с позднего кайнозоя граница между мантийными резервуарами индийского и тихоокеанского MORB, скорее всего, проходила по Курило-Камчатскому желобу.

Благодарности. Авторы благодарят академика А.И. Ханчука, докт. геол.-мин. наук И.А. Тарарина, канд. геол.-мин. наук А.А. Чащина (ДВГИ ДВО РАН) за обсуждение, замечания и рекомендации, позволившие значительно улучшить качество работы. Авторы глубоко признательны Б. Розэру за помощь при работе над текстом (университет Шимане, г. Матсуе, Япония); Н.Н Семеновой, Н.И. Гвоздевой, Л.А. Кариюк (ДВГИ ДВО РАН) за помощь в обработке материалов и техническое оформление работы.

СПИСОК ЛИТЕРАТУРЫ

Злобин Т.К., Пискунов В.Н., Фролова Т.И. Новые данные о структуре земной коры в центральной части Курильской островной дуги // Докл. АН СССР. 1987. Т. 293. С. 185–187.

ПЕТРОЛОГИЯ том 20 № 1 2012

Мартынов Ю.А., Ханчук А.И., Кимура Дж.-И., Рыбин А.В., Мартынов А.Ю. Геохимия и петрогенезис четвертичных вулканитов Курильской островной дуги // Петрология. 2010. Т. 18. № 5. С. 489–513.

Подводный вулканизм и зональность Курильской островной дуги. М.: Наука, 1992. 527 с.

Тарарин И.А., Леликов Е.П., Итая Т. Плейстоценовые подводные вулканы восточной части Курильской котловины (Охотское море) // Докл. АН. 2000. Т. 371. С. 366–370.

Федорченко В.И., Абдурахманов А.И., Родионова Р.И. Вулканизм Курильской островной дуги: геология и петрогенезис. М.: Наука, 1989. 239 с.

Bailey J.C. Role of subducted sediments in the genesis of Kuril-Kamchatka island arc basalts: Sr isotopic and elemental evidence // Geochem. J. 1996. V. 30. P. 289–321.

Baranov B., Wong H.K., Dozorova K., Kapp B., Lüdmann T., Karnaukh V. Opening geometry of the Kurile Basin (Okhotsk Sea) as inferred from structural data // The Island Arc. 2002. V. 11. P. 206–19.

Bindeman I.N., Bailey J.C. Trace elements in anorthite megacrysts from the Kurile Island Arc: a window to acrossarc geochemical variations in magma compositions // Earth Planet. Sci. Lett. 1999. V. 169. P. 209–26.

Blichert-Toft J., Chauvel C., Albareade F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS // Contrib. Mineral. Pertol. 1997. V. 127. P. 248–260.

Crawford A.J., Briqueu L., Laporte C., Hasenaka T. Coexistence of Indian and Pacific oceaninc upper mantle reservoirs beneath the Central New Hebrides islnd arc // AGU Geophys. Monog. 1995. V. 88. P. 199–217.

Duggen S., Portnyagin M., Baker J., Ulfbeck D., Hoernle K., Garbe-Schonberg D., Grassineau N. Drastic shift in lava geochemistry in the volcanic-fron to rear-arc region of the Southern Kamchtkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting // Geochim. Cosmochim. Acta. 2007. V. 71. P. 452–480.

Dupré B., Allègre C.J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena // Nature. 1983. V. 303. P. 142–146.

Haase K.M., Worhington T.J., Stoffers P., Garbe-Scönberg D., Wright I. Mantle dynamics, element recycling and magma genesis beneath the Kermadec arc-Havre Trough // Geochem. Geophys. Geosyst.. 2002. V. 3. doi: 10.1029/2002GC000335

Hamelin B., Allègre C.J. Large-scale regional units in the depleted upper mantle revealed by an isotopic study of the South-West Indian Ridge // Nature. 1985. V. 315. P. 196–199.

Hauff F., Hoernle K., Schmidt A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system // Geochem. Geophys. Geosyst. 2003. V. 4. doi: 10.1029/2002GC000421

Hergt J.M., Hawkesworth C.J. Pb, Sr and Nd isotopic evolution of the Lau Basin: implications for mantle dynamics during back-arc opening // Proceeding of the Ocean Drilling Program. Sci. Res. 1994. V. 135. P. 505–517.

Hickey-Vargas R. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc

ПЕТРОЛОГИЯ том 20 № 1 2012

and basin magmas of the Philippine Sea plate // Earth Planet. Sci. Lett. 1991. V. 107. P. 290–304.

Hickey-Vergas R., Hergt J.M., Spadea P. The indian Oceantype isotopic signature in Western Pacific marginal basins: origin and significance // AGU Geophys. Monog. 1995. V. 88. P. 175–197.

Ishikawa T., Tera F. Source, composition and distribution of the fluid in the Kuril mantle wedge: Constrain from across-arc variations of B/Nb and B isotopes // Earth Planet. Sci. Lett. 1997. V. 152. P. 113–122.

Jolivet L., Tamaki K. Neogene kinematics in the Japan Sea region and volcanic activity of the norheast Japan arc // Proceeding of the Ocean Drilling Program. Sci. Res. 1992. V. 127/128. Part 2. P. 1311.

Kersting A.B., Arculus R.J., Gust D.A. Lithospheric contributions to Arc Magmatism: isototpe variations along strike in volcanoes of Honshu, Japan // Science. 1996. V. 272. P. 1464–1467.

Kimura J.-I., Yoshida T. Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc // J. Petrol. 2006. V. 47. P. 2185–2232.

Klein E.M., Langmuir C.H., Zindler A., Staudigel H., Hamelin B. Isotope evidence of a mantle convection boundary of the Australian–Antarctic Discordance // Nature. 1988. V. 333. P. 623–629.

Look G., McDonough W.F., Goldstein S.L., Hofmann A.W. Isotopic compositions of volcanic glasses from the Lau basin // Mar. Min. 1990. V. 9. P. 235–245.

Mahoney J.J., Natland J.H., White W.M., Poreda R., Bloomer S.H., Fisher R.L., Baxter A.N. Isotope and geochemical provinces in the Western Indian Ocean spreading centers // J. Geophys. Res. 1989. V. 94. P. 4033– 4052.

Mahoney J.J., LeRoex A.P., Peng Z., Fisher R.L., Natland J.H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206 Pb/ 204 Pb mid ocean ridge basalts: isotope systematics of the Central Southwest Indian Ridge (17°-50°E) // J. Geophys. Res. 1992. V. 97. P. 19771–19779.

Martynov A.Yu., Kimura J.-I., Martynov Yu.A., Rybun A.V. Geochemistry of late Cenozoic lavas on Kunashir Island, Kurile Arc // The Island Arc. 2010. V. 19. P. 86–104.

Milner S.C., LeRoex A.P. Isotope characteristics of the Okenyenya igneous complex, northwestern Namibia: Constraints on the composition of the early Tristan plume and the origin of the EM1 mantle component // Earth Planet. Sci. Lett. 1996. V. 141. P. 277–291.

Münker C., Wörner G., Yogodzinski G.M., Churikova T.G. Behaviour of high field strength elements in subduction zones: constraints from Kamtchatka–Aleutian arc lavas // Earth Planet. Sci. Lett. 2004. V. 224. P. 275–293.

Nebel O., Münker C., Nebel-Jacobsen Y.J., Kleine T., Mezger K., Mortimer N. Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian–Pacific mantle boundary in the SW Pacific // Earth Planet. Sci. Lett. 2007. doi: 10.1016/j.epsl.2006.11.046.

Pearce J.A., Peate D.W. Tectonic implications of the composition of volcanic arc magmas // Annual Rev. Earth Planet. Sci. 1995. V. 23. P. 251–285.

Pearce J.A., Kempton P.D., Nowell G.M., Noble S.R. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pa-

cific arc-basin systems // J. Petrol. 1999. V. 40. P. 1579-1611.

Pearce J.A., Kempton P.D., Gill J.B. Hf-Nd evidence for the origin and distribution of manlte domains in the SW Pacific // Earth Planet. Sci. Lett. 2007. V. 260. P. 98–114.

Peate D.W., Hawkesworth C.J., Mantovani M.M.S., Rogers N.W., Turner S.P. Petrogenesis and stratigraphy of the high-Ti/Y Urubici magma type in the Parana flood basalt province and implications for the nature of 'Dupal'-type mantle in the South Atlantic region // J. Petrol. 1999. V. 40. P. 451–473.

Plank T., Langmuir C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle // Chemical Geology. 1998. V. 145. P. 325–94.

Plank T., Kelley K.A., Murray R.W., Stern L.Q. Chemical composition of sediments subducting at the Izu-Bonin trench // Geochem. Geophys. Geosyst. 2007. V. 8. doi: 10.1029/2006GC001444.

Pouclet A., Bellon H. Geochemistry and isotopic composition of volcanic rocks from the Yamato Basin: Hole 794D, Sea of Japan // Eds. K. Tamaki, K. Suyehiro, K. Allan,

M. McWilliams. Proceedings of the Ocean Drilling Program. Sci. Res. 1992. P. 779–789.

Rehkämper M., Hofmann A.W. Recycled oceanic crust and sediment in Indian Ocean MORB // Earth Planet. Sci. Lett. 1997. V. 147. P. 93–106.

Ryan J.G., Morris J., Tera F., Leeman W.P., Tsvetkov A. Cross-arc geochemical variations in the Kurile Arc as a function of slab depth // Science. 1995. V. 270. P. 625–627. Straub S.M., Goldstein S.L., Class C., Schmidt A. Midocean-ridge basalt of Indian type in the northwest Pacific Ocean basin // Nature Geoscience. 2009. V. 2. doi: 10.1038/NGEO471.

Syracuse E.M., Albers G.A. Global compilation of variations in slab depth beneath arc volcanoes and implications // Geochem. Geophys. Geosyst. 2006. V. 7. doi: 10.1029/2005GC001045.

Woodhead J.D., Hergt J.M., Davidson J.P., Eggins S.M. Hafnium isotope evidence for "conservative" element mobility during subduction zone processes // Earth Planet. Sci. Lett. 2001. V. 192. P. 331–346.